Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

app2(f, app2(app2(cons, nil), y)) -> y
app2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> app2(app2(app2(copy, n), y), z)
app2(app2(app2(copy, 0), y), z) -> app2(f, z)
app2(app2(app2(copy, app2(s, x)), y), z) -> app2(app2(app2(copy, x), y), app2(app2(cons, app2(f, y)), z))
app2(app2(map, fun), nil) -> nil
app2(app2(map, fun), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(fun, x)), app2(app2(map, fun), xs))
app2(app2(filter, fun), nil) -> nil
app2(app2(filter, fun), app2(app2(cons, x), xs)) -> app2(app2(app2(app2(filter2, app2(fun, x)), fun), x), xs)
app2(app2(app2(app2(filter2, true), fun), x), xs) -> app2(app2(cons, x), app2(app2(filter, fun), xs))
app2(app2(app2(app2(filter2, false), fun), x), xs) -> app2(app2(filter, fun), xs)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app2(f, app2(app2(cons, nil), y)) -> y
app2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> app2(app2(app2(copy, n), y), z)
app2(app2(app2(copy, 0), y), z) -> app2(f, z)
app2(app2(app2(copy, app2(s, x)), y), z) -> app2(app2(app2(copy, x), y), app2(app2(cons, app2(f, y)), z))
app2(app2(map, fun), nil) -> nil
app2(app2(map, fun), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(fun, x)), app2(app2(map, fun), xs))
app2(app2(filter, fun), nil) -> nil
app2(app2(filter, fun), app2(app2(cons, x), xs)) -> app2(app2(app2(app2(filter2, app2(fun, x)), fun), x), xs)
app2(app2(app2(app2(filter2, true), fun), x), xs) -> app2(app2(cons, x), app2(app2(filter, fun), xs))
app2(app2(app2(app2(filter2, false), fun), x), xs) -> app2(app2(filter, fun), xs)

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(app2(cons, app2(f, y)), z)
APP2(app2(map, fun), app2(app2(cons, x), xs)) -> APP2(app2(cons, app2(fun, x)), app2(app2(map, fun), xs))
APP2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> APP2(app2(app2(copy, n), y), z)
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(cons, app2(f, y))
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(copy, x)
APP2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> APP2(app2(copy, n), y)
APP2(app2(filter, fun), app2(app2(cons, x), xs)) -> APP2(app2(app2(filter2, app2(fun, x)), fun), x)
APP2(app2(filter, fun), app2(app2(cons, x), xs)) -> APP2(app2(app2(app2(filter2, app2(fun, x)), fun), x), xs)
APP2(app2(app2(app2(filter2, true), fun), x), xs) -> APP2(app2(cons, x), app2(app2(filter, fun), xs))
APP2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> APP2(copy, n)
APP2(app2(map, fun), app2(app2(cons, x), xs)) -> APP2(fun, x)
APP2(app2(filter, fun), app2(app2(cons, x), xs)) -> APP2(filter2, app2(fun, x))
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(f, y)
APP2(app2(app2(app2(filter2, true), fun), x), xs) -> APP2(app2(filter, fun), xs)
APP2(app2(filter, fun), app2(app2(cons, x), xs)) -> APP2(app2(filter2, app2(fun, x)), fun)
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(app2(copy, x), y)
APP2(app2(app2(app2(filter2, false), fun), x), xs) -> APP2(filter, fun)
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(app2(app2(copy, x), y), app2(app2(cons, app2(f, y)), z))
APP2(app2(map, fun), app2(app2(cons, x), xs)) -> APP2(app2(map, fun), xs)
APP2(app2(filter, fun), app2(app2(cons, x), xs)) -> APP2(fun, x)
APP2(app2(app2(app2(filter2, true), fun), x), xs) -> APP2(filter, fun)
APP2(app2(app2(copy, 0), y), z) -> APP2(f, z)
APP2(app2(app2(app2(filter2, true), fun), x), xs) -> APP2(cons, x)
APP2(app2(app2(app2(filter2, false), fun), x), xs) -> APP2(app2(filter, fun), xs)
APP2(app2(map, fun), app2(app2(cons, x), xs)) -> APP2(cons, app2(fun, x))

The TRS R consists of the following rules:

app2(f, app2(app2(cons, nil), y)) -> y
app2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> app2(app2(app2(copy, n), y), z)
app2(app2(app2(copy, 0), y), z) -> app2(f, z)
app2(app2(app2(copy, app2(s, x)), y), z) -> app2(app2(app2(copy, x), y), app2(app2(cons, app2(f, y)), z))
app2(app2(map, fun), nil) -> nil
app2(app2(map, fun), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(fun, x)), app2(app2(map, fun), xs))
app2(app2(filter, fun), nil) -> nil
app2(app2(filter, fun), app2(app2(cons, x), xs)) -> app2(app2(app2(app2(filter2, app2(fun, x)), fun), x), xs)
app2(app2(app2(app2(filter2, true), fun), x), xs) -> app2(app2(cons, x), app2(app2(filter, fun), xs))
app2(app2(app2(app2(filter2, false), fun), x), xs) -> app2(app2(filter, fun), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(app2(cons, app2(f, y)), z)
APP2(app2(map, fun), app2(app2(cons, x), xs)) -> APP2(app2(cons, app2(fun, x)), app2(app2(map, fun), xs))
APP2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> APP2(app2(app2(copy, n), y), z)
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(cons, app2(f, y))
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(copy, x)
APP2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> APP2(app2(copy, n), y)
APP2(app2(filter, fun), app2(app2(cons, x), xs)) -> APP2(app2(app2(filter2, app2(fun, x)), fun), x)
APP2(app2(filter, fun), app2(app2(cons, x), xs)) -> APP2(app2(app2(app2(filter2, app2(fun, x)), fun), x), xs)
APP2(app2(app2(app2(filter2, true), fun), x), xs) -> APP2(app2(cons, x), app2(app2(filter, fun), xs))
APP2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> APP2(copy, n)
APP2(app2(map, fun), app2(app2(cons, x), xs)) -> APP2(fun, x)
APP2(app2(filter, fun), app2(app2(cons, x), xs)) -> APP2(filter2, app2(fun, x))
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(f, y)
APP2(app2(app2(app2(filter2, true), fun), x), xs) -> APP2(app2(filter, fun), xs)
APP2(app2(filter, fun), app2(app2(cons, x), xs)) -> APP2(app2(filter2, app2(fun, x)), fun)
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(app2(copy, x), y)
APP2(app2(app2(app2(filter2, false), fun), x), xs) -> APP2(filter, fun)
APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(app2(app2(copy, x), y), app2(app2(cons, app2(f, y)), z))
APP2(app2(map, fun), app2(app2(cons, x), xs)) -> APP2(app2(map, fun), xs)
APP2(app2(filter, fun), app2(app2(cons, x), xs)) -> APP2(fun, x)
APP2(app2(app2(app2(filter2, true), fun), x), xs) -> APP2(filter, fun)
APP2(app2(app2(copy, 0), y), z) -> APP2(f, z)
APP2(app2(app2(app2(filter2, true), fun), x), xs) -> APP2(cons, x)
APP2(app2(app2(app2(filter2, false), fun), x), xs) -> APP2(app2(filter, fun), xs)
APP2(app2(map, fun), app2(app2(cons, x), xs)) -> APP2(cons, app2(fun, x))

The TRS R consists of the following rules:

app2(f, app2(app2(cons, nil), y)) -> y
app2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> app2(app2(app2(copy, n), y), z)
app2(app2(app2(copy, 0), y), z) -> app2(f, z)
app2(app2(app2(copy, app2(s, x)), y), z) -> app2(app2(app2(copy, x), y), app2(app2(cons, app2(f, y)), z))
app2(app2(map, fun), nil) -> nil
app2(app2(map, fun), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(fun, x)), app2(app2(map, fun), xs))
app2(app2(filter, fun), nil) -> nil
app2(app2(filter, fun), app2(app2(cons, x), xs)) -> app2(app2(app2(app2(filter2, app2(fun, x)), fun), x), xs)
app2(app2(app2(app2(filter2, true), fun), x), xs) -> app2(app2(cons, x), app2(app2(filter, fun), xs))
app2(app2(app2(app2(filter2, false), fun), x), xs) -> app2(app2(filter, fun), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 2 SCCs with 18 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(app2(app2(copy, x), y), app2(app2(cons, app2(f, y)), z))

The TRS R consists of the following rules:

app2(f, app2(app2(cons, nil), y)) -> y
app2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> app2(app2(app2(copy, n), y), z)
app2(app2(app2(copy, 0), y), z) -> app2(f, z)
app2(app2(app2(copy, app2(s, x)), y), z) -> app2(app2(app2(copy, x), y), app2(app2(cons, app2(f, y)), z))
app2(app2(map, fun), nil) -> nil
app2(app2(map, fun), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(fun, x)), app2(app2(map, fun), xs))
app2(app2(filter, fun), nil) -> nil
app2(app2(filter, fun), app2(app2(cons, x), xs)) -> app2(app2(app2(app2(filter2, app2(fun, x)), fun), x), xs)
app2(app2(app2(app2(filter2, true), fun), x), xs) -> app2(app2(cons, x), app2(app2(filter, fun), xs))
app2(app2(app2(app2(filter2, false), fun), x), xs) -> app2(app2(filter, fun), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


APP2(app2(app2(copy, app2(s, x)), y), z) -> APP2(app2(app2(copy, x), y), app2(app2(cons, app2(f, y)), z))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial Order [17,21] with Interpretation:

POL( APP2(x1, x2) ) = max{0, x1 - 1}


POL( app2(x1, x2) ) = x1 + x2


POL( copy ) = 1


POL( s ) = 1



The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app2(f, app2(app2(cons, nil), y)) -> y
app2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> app2(app2(app2(copy, n), y), z)
app2(app2(app2(copy, 0), y), z) -> app2(f, z)
app2(app2(app2(copy, app2(s, x)), y), z) -> app2(app2(app2(copy, x), y), app2(app2(cons, app2(f, y)), z))
app2(app2(map, fun), nil) -> nil
app2(app2(map, fun), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(fun, x)), app2(app2(map, fun), xs))
app2(app2(filter, fun), nil) -> nil
app2(app2(filter, fun), app2(app2(cons, x), xs)) -> app2(app2(app2(app2(filter2, app2(fun, x)), fun), x), xs)
app2(app2(app2(app2(filter2, true), fun), x), xs) -> app2(app2(cons, x), app2(app2(filter, fun), xs))
app2(app2(app2(app2(filter2, false), fun), x), xs) -> app2(app2(filter, fun), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

APP2(app2(app2(app2(filter2, true), fun), x), xs) -> APP2(app2(filter, fun), xs)
APP2(app2(map, fun), app2(app2(cons, x), xs)) -> APP2(fun, x)
APP2(app2(filter, fun), app2(app2(cons, x), xs)) -> APP2(app2(app2(app2(filter2, app2(fun, x)), fun), x), xs)
APP2(app2(app2(app2(filter2, false), fun), x), xs) -> APP2(app2(filter, fun), xs)
APP2(app2(filter, fun), app2(app2(cons, x), xs)) -> APP2(fun, x)
APP2(app2(map, fun), app2(app2(cons, x), xs)) -> APP2(app2(map, fun), xs)

The TRS R consists of the following rules:

app2(f, app2(app2(cons, nil), y)) -> y
app2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> app2(app2(app2(copy, n), y), z)
app2(app2(app2(copy, 0), y), z) -> app2(f, z)
app2(app2(app2(copy, app2(s, x)), y), z) -> app2(app2(app2(copy, x), y), app2(app2(cons, app2(f, y)), z))
app2(app2(map, fun), nil) -> nil
app2(app2(map, fun), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(fun, x)), app2(app2(map, fun), xs))
app2(app2(filter, fun), nil) -> nil
app2(app2(filter, fun), app2(app2(cons, x), xs)) -> app2(app2(app2(app2(filter2, app2(fun, x)), fun), x), xs)
app2(app2(app2(app2(filter2, true), fun), x), xs) -> app2(app2(cons, x), app2(app2(filter, fun), xs))
app2(app2(app2(app2(filter2, false), fun), x), xs) -> app2(app2(filter, fun), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


APP2(app2(map, fun), app2(app2(cons, x), xs)) -> APP2(fun, x)
APP2(app2(filter, fun), app2(app2(cons, x), xs)) -> APP2(app2(app2(app2(filter2, app2(fun, x)), fun), x), xs)
APP2(app2(filter, fun), app2(app2(cons, x), xs)) -> APP2(fun, x)
APP2(app2(map, fun), app2(app2(cons, x), xs)) -> APP2(app2(map, fun), xs)
The remaining pairs can at least be oriented weakly.

APP2(app2(app2(app2(filter2, true), fun), x), xs) -> APP2(app2(filter, fun), xs)
APP2(app2(app2(app2(filter2, false), fun), x), xs) -> APP2(app2(filter, fun), xs)
Used ordering: Polynomial Order [17,21] with Interpretation:

POL( APP2(x1, x2) ) = max{0, x2 - 1}


POL( app2(x1, x2) ) = x1 + x2 + 1


POL( cons ) = 0



The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APP2(app2(app2(app2(filter2, true), fun), x), xs) -> APP2(app2(filter, fun), xs)
APP2(app2(app2(app2(filter2, false), fun), x), xs) -> APP2(app2(filter, fun), xs)

The TRS R consists of the following rules:

app2(f, app2(app2(cons, nil), y)) -> y
app2(f, app2(app2(cons, app2(f, app2(app2(cons, nil), y))), z)) -> app2(app2(app2(copy, n), y), z)
app2(app2(app2(copy, 0), y), z) -> app2(f, z)
app2(app2(app2(copy, app2(s, x)), y), z) -> app2(app2(app2(copy, x), y), app2(app2(cons, app2(f, y)), z))
app2(app2(map, fun), nil) -> nil
app2(app2(map, fun), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(fun, x)), app2(app2(map, fun), xs))
app2(app2(filter, fun), nil) -> nil
app2(app2(filter, fun), app2(app2(cons, x), xs)) -> app2(app2(app2(app2(filter2, app2(fun, x)), fun), x), xs)
app2(app2(app2(app2(filter2, true), fun), x), xs) -> app2(app2(cons, x), app2(app2(filter, fun), xs))
app2(app2(app2(app2(filter2, false), fun), x), xs) -> app2(app2(filter, fun), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 2 less nodes.